Commercial Foundation Repair in MT and WY, including Bozeman, Belgrade & Jackson.

Commercial Helical Anchors / Tiebacks

Helical Anchors (also referred to as tiebacks) provide lateral stability to foundation walls and retaining walls with unbalanced earth pressures. Helical anchors can be installed with hand-held equipment, mini-excavators, skid steers, backhoes, trackhoes, or crane-supported rigs so the anchors can be installed in almost any application. This versatility, along with the ability to immediately load and test the anchors, make helicals a convenient and economical solution for a wide variety of projects. helical tiebacks in Montana and Wyoming

ADVANTAGES

  • Predictable capacity
  • Helix blade configuration selected to achieve design embedment and capacity
  • All-weather installation
  • Can be installed in areas of limited or tight access
  • Installation does not generate spoils
  • Clean installation with no messy grout
  • Load tests can be performed immediately following installation
  • Available with optional hot-dip galvanizing for added corrosion protection

Design Considerations

Helical anchors are a factory-manufactured steel foundation system consisting of a central shaft with one or more helix-shaped bearing plates, commonly referred to as blades, welded to the lead section. Extension shafts, with or without additional helix plates, are used to extend the anchor into competent load-bearing soils. Helical anchors are advanced ("screwed") into the ground with the application of torque.

The terms helical piles, screw piles, helical piers, helical anchors, helix piers, and helix anchors are often used interchangeably by specifiers. However, the term "pier" more often refers to a helical foundation system loaded in axial compression, while the term "anchor" more often refers to a helical foundation system loaded in axial tension.

Model 150 Helical Anchor System

  • Outer Dimensions = 1.50" x 1.50"
  • Anchor Shaft Yield Strength = 90 ksi (min.)
  • Coupling Hardware: ¾" Grade 8 Bolt with Nut
  • Available Helix Blade Diameters = 6", 8", 10", 12" and 14"
  • Helix Blade Thickness = 0.375"
  • Termination Hardware: 1" Threaded Rod, Tensile Strength = 120 ksi (min.)

-- View Our Helical Anchors and Tiebacks Product Specifications document --

Model 175 Helical Anchor System

  • Outer Dimensions = 1.75" Round Corner Square Bar
  • Anchor Shaft Yield Strength = 90 ksi (min.)
  • Coupling Hardware: (2) ¾" Grade 8 Bolt with Nut
  • Available Helix Blade Diameters = 6", 8", 10", 12" and 14"
  • Helix Blade Thickness = 0.375"
  • Termination Hardware: 1" Threaded Rod, Tensile Strength = 120 ksi (min.)

-- View Our Helical Anchors and Tiebacks Product Specifications document --

Capacities Summary
 

Maximum Allowable Mechanical Shaft Capacities (3,5)

 

Default Torque Correlation Factor (6) Kt (ft-1)

Maximum Installation Torque (ft-lbs) Maximum Ultimate Torque Correlated Soil Capacity (6,7)Qu = Kt X T
(kips)
Axial Compression (kips) Axial Tension (kips)

HA150

10

6,500

65.0(8)

26.5(1,8)

26.5(1)

HA175

10

10,000

100.0(8)

65.7(8)

53.0(1)

HP287

9

5,600

50.4

46.4(4)

23.6(2)

HP288

9

7,900

71.1

65.4(4)

34.1(2)

HP349

7

13,000

91.0

88.7(4)

50.8(2)

HP350

7

16,000

112.0

107.8(4)

62.5(5)

  1. Governed by AISC allowable capacity of single Ø3/4" (HA150) or (2) Ø3/4" (HA175) Grade 8 bolt(s) in double shear.
  2. Governed by bearing at the bolt holes.
  3. Capacities include a scheduled loss in steel thickness due to corrosion for black, uncoated steel. Scheduled thickness losses are for a period of 50 years and are in accordance with ICC-ES AC358.
  4. Allowable compression capacities are based on continuous lateral soil confinement in soils with SPT blow counts  ≥ 4.Piles with exposed unbraced lengths or piles placed in weaker or fluid soils should be evaluated on a case by case basis by the project engineer.
  5. Listed mechanical capacities are for the shaft only. System capacities should also not exceed the installed torque correlated capacity or those listed in the respective bracket capacity tables.
  6. Listed default Kt factors are widely accepted industry standards. They are generally conservative and are consistent with those listed in ICC-ES AC358. Site-specific K t factors can be determined for a given project with full-scale load testing.
  7. Soil capacities listed are ultimate values at maximum installation torque. Allowable soil capacity values are obtained by dividing the ultimate values by the appropriate factor of safety (FOS). FOS is most commonly taken as 2.0, although a higher or lower FOS may be considered at the discretion of the helical pile designer or as dictated by local code requirements.
  8. Square shaft piles may be considered for compression applications in soil profiles that offer sufficient continuous lateral support; e.g., in soils with SPT blow counts ≥ 10. Even in these higher strength soil conditions, buckling analysis should be considered, taking into account discontinuities and potential eccentricities created by the couplers

Determination of Capacity

The ultimate capacity of a helical anchor may be calculated using the traditional bearing capacity equation:

Qu = ∑ [Ah (cNc + qNq)]

Where:
Qu = Ultimate Anchor Capacity (lb)
Ah = Area of Individual Helix Plate (ft2)
c = Effective Soil Cohesion (lb/ft2)
Nc = Dimensionless Bearing Capacity Factor = 9
q = Effective Vertical Overburden Pressure (lb/ft2)
Nq = Dimensionless Bearing Capacity Factor

Total stress parameters should be used for short-term and transient load applications and effective stress parameters should be used for long-term, permanent load applications. A factor of safety of 2 is typically used to determine the allowable soil bearing capacity, especially if torque is monitored during the helical anchor installation.

Determiniation of Capacity

Like other deep foundation alternatives, there are many factors to be considered in designing a helical anchor foundation. Foundation Supportworks recommends that helical anchor design be completed by an experienced geotechnical engineer or other qualified professional.

Another well-documented and accepted method for estimating helical anchor capacity is by correlation to installation torque. In simple terms, the torsional resistance generated during helical anchor installation is a measure of soil shear strength and can be related to the bearing capacity of the anchor.

Qu = KT

Where:
Qu = Ultimate anchor Capacity (lb)
K = Capacity to Torque Ratio (ft-1)
T = Installation Torque (ft-lb)

The capacity to torque ratio is not a constant and varies with soil conditions and the size of the anchor shaft. Load testing using the proposed helical anchor and helix blade configuration is the best way to determine project-specific K-values. However, ICC-ES AC358 provides default K-values for varying anchor shaft sizes, which may be used conservatively for most soil conditions. The default value for the Model 150 Helical Anchor System (1.50" square shaft) is K = 10 ft-1.

-- View Our Helical Anchors and Tiebacks Product Specifications document --

Helix Blade Geometry

Helix Blade Geometry

Foundation Supportworks' helical anchors feature blades manufactured with a true helix shape conforming to the geometry criteria of ICC-ES AC358. The leading and trailing edges of true helix blades are within one-quarter inch of parallel to each other and any radial measurement across the blade is perpendicular to the anchor shaft. A true helix shape along with proper alignment and spacing of the blades is critical to minimize soil disturbance during installation.

Conversely, blades that are not a true helix shape are often formed to a 'duckbill' appearance. These plates create a great deal of soil disturbance and do not conform to the helix geometry requirements of ICC-ES AC358 since their torque to capacity relationships are not well documented.

Looking for a price? Get a no cost, no obligation free estimate.

Serving MT and WY including the Greater Bozeman area
Cities in Beaverhead County, MT
Dillon
Wise River

Cities in Big Horn County, MT
Busby
Crow Agency
Decker
Garryowen
Hardin
Lodge Grass
Saint Xavier
Wyola

Cities in Broadwater County, MT
Radersburg
Toston
Townsend
Winston

Cities in Carbon County, MT
Bearcreek
Belfry
Bridger
Fromberg
Joliet
Red Lodge
Roberts
Roscoe

Cities in Carter County, MT
Alzada
Boyes
Hammond

Cities in Cascade County, MT
Belt
Cascade
Great Falls
Malmstrom Afb
Monarch
Neihart
Sand Coulee
Stockett

Cities in Chouteau County, MT
Highwood

Cities in Custer County, MT
Miles City
Volborg

Cities in Deer Lodge County, MT
Anaconda
Warm Springs

Cities in Fergus County, MT
Buffalo
Coffee Creek
Forest Grove
Grass Range
Lewistown
Moore

Cities in Gallatin County, MT
Belgrade
Big Sky
Bozeman
Gallatin Gateway
Manhattan
Three Forks

Cities in Golden Valley County, MT
Lavina
Ryegate

Cities in Granite County, MT
Drummond
Hall
Philipsburg

Cities in Jefferson County, MT
Boulder
Cardwell
Clancy
Jefferson City
Whitehall

Cities in Judith Basin County, MT
Geyser
Hobson
Moccasin
Raynesford
Stanford

Cities in Lewis And Clark County, MT
Augusta
Canyon Creek
East Helena
Fort Harrison
Helena
Lincoln
Marysville
Wolf Creek

Cities in Madison County, MT
Ennis
Harrison
Mc Allister
Norris
Pony
Sheridan
Silver Star
Twin Bridges
Virginia City

Cities in Meagher County, MT
Martinsdale
Ringling
White Sulphur Springs

Cities in Missoula County, MT
Bonner
Clinton
Condon
Frenchtown
Huson
Lolo
Milltown
Missoula
Seeley Lake

Cities in Musselshell County, MT
Musselshell
Roundup

Cities in Park County, MT
Emigrant
Gardiner
Livingston
Pray
Springdale
Wilsall

Cities in Petroleum County, MT
Winnett

Cities in Powder River County, MT
Biddle
Broadus
Olive
Otter
Powderville

Cities in Powell County, MT
Deer Lodge
Garrison
Gold Creek
Helmville
Ovando

Cities in Ravalli County, MT
Corvallis
Florence
Hamilton
Stevensville
Victor

Cities in Rosebud County, MT
Ashland
Birney
Colstrip
Forsyth
Ingomar
Lame Deer
Rosebud

Cities in Silver Bow County, MT
Butte
Divide
Melrose
Ramsay

Cities in Stillwater County, MT
Absarokee
Columbus
Fishtail
Nye
Park City
Rapelje
Reed Point

Cities in Sweet Grass County, MT
Big Timber
Greycliff
Mc Leod
Melville

Cities in Treasure County, MT
Bighorn
Hysham
Sanders

Cities in Wheatland County, MT
Harlowton
Judith Gap
Shawmut
Two Dot

Cities in Yellowstone County, MT
Acton
Ballantine
Billings
Broadview
Custer
Huntley
Laurel
Molt
Pompeys Pillar
Shepherd
Worden

Cities in Big Horn County, WY
Basin
Burlington
Deaver
Greybull
Hyattville
Lovell
Manderson
Otto
Shell

Cities in Park County, WY
Cody
Meeteetse
Powell
Yellowstone National Park

Cities in Teton County, WY
Alta
Jackson
Kelly
Moose
Moran
Wilson

Our Locations:

HelixPro Design Software
Veteran Owned Small Business
Yellowstone Structural Systems BBB Business Review